Labels

Apache Hadoop (3) ASP.NET (2) AWS S3 (2) Batch Script (3) BigQuery (21) BlobStorage (1) C# (3) Cloudera (1) Command (2) Data Model (3) Data Science (1) Django (1) Docker (1) ETL (7) Google Cloud (5) GPG (2) Hadoop (2) Hive (3) Luigi (1) MDX (21) Mongo (3) MYSQL (3) Pandas (1) Pentaho Data Integration (5) PentahoAdmin (13) Polybase (1) Postgres (1) PPS 2007 (2) Python (13) R Program (1) Redshift (3) SQL 2016 (2) SQL Error Fix (18) SQL Performance (1) SQL2012 (7) SQOOP (1) SSAS (20) SSH (1) SSIS (42) SSRS (17) T-SQL (75) Talend (3) Vagrant (1) Virtual Machine (2) WinSCP (1)

Monday, December 26, 2011

Define Data Warehouse


A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of data in support of management's decision making process.

Subject-Oriented: A data warehouse can be used to analyze a particular subject area. For example, "sales" can be a particular subject.

Integrated: A data warehouse integrates data from multiple data sources. For example, source A and source B may have different ways of identifying a product, but in a data warehouse, there will be only a single way of identifying a product.

Time-Variant: Historical data is kept in a data warehouse. For example, one can retrieve data from 3 months, 6 months, 12 months, or even older data from a data warehouse. This contrasts with a transactions system, where often only the most recent data is kept. For example, a transaction system may hold the most recent address of a customer, where a data warehouse can hold all addresses associated with a customer.

Non-volatile: Once data is in the data warehouse, it will not change. So, historical data in a data warehouse should never be altered.

No comments:

Post a Comment