Labels

Apache Hadoop (3) ASP.NET (2) AWS S3 (2) Batch Script (3) BigQuery (21) BlobStorage (1) C# (3) Cloudera (1) Command (2) Data Model (3) Data Science (1) Django (1) Docker (1) ETL (7) Google Cloud (5) GPG (2) Hadoop (2) Hive (3) Luigi (1) MDX (21) Mongo (3) MYSQL (3) Pandas (1) Pentaho Data Integration (5) PentahoAdmin (13) Polybase (1) Postgres (1) PPS 2007 (2) Python (13) R Program (1) Redshift (3) SQL 2016 (2) SQL Error Fix (18) SQL Performance (1) SQL2012 (7) SQOOP (1) SSAS (20) SSH (1) SSIS (42) SSRS (17) T-SQL (75) Talend (3) Vagrant (1) Virtual Machine (2) WinSCP (1)

Saturday, September 29, 2018

Bigquery - SQL for Flattening Custom Metrics Value

Google Analytics stream data into bigquery in a nested json format, it make sometimes difficult for the users to flatten custom metrics data for each event, this can be overcome by using below custom dimension temp function (Standard SQL only). We can pass customMetrics.index and customMetrics.value as parameter for temp function.

CREATE TEMP FUNCTION
  customMetricByIndex(indx INT64,
    arr ARRAY<STRUCT<index INT64,
    value INT64>>) AS ( (
    SELECT
      x.value
    FROM
      UNNEST(arr) x
    WHERE
      indx=x.index) );

    SELECT visitStarttime, visitId, visitNumber,
    hit.hitNumber AS session_hit_count,
    hit.type AS hit_type,
    hit.page.hostname url_domain_name,
    hit.page,
    customMetricByIndex(3,  hit.customMetrics) AS custom_metrics_1
  FROM
    `project.dataset.ga_sessions_20180909`,
    UNNEST(hits) AS hit
    

Bigquery - SQL for Flattening Custom Dimensions Value

Google Analytics stream data into bigquery in a nested json format, it make sometimes difficult for the users to flatten custom dimension data for each event, this can be overcome by using below custom dimension temp function (Standard SQL only). We can pass customDimensions.index and customDimensions.value as parameter for temp function.

CREATE TEMP FUNCTION
  customDimensionByIndex(indx INT64,
    arr ARRAY<STRUCT<index INT64,
    value STRING>>) AS ( (
    SELECT
      x.value
    FROM
      UNNEST(arr) x
    WHERE
      indx=x.index) );

    SELECT visitStarttime, visitId, visitNumber,
    hit.hitNumber AS session_hit_count,
    hit.type AS hit_type,
    hit.page.hostname url_domain_name,
    hit.page,
    customDimensionByIndex(165,  hit.customDimensions) AS custom_variable_1
  FROM
    `project.dataset.ga_sessions_20180909`,
    UNNEST(hits) AS hit

Bigquery Views for Google Analytics Realtime Session - Standard SQL


People who started using Google Analytics real-time streaming into bigquery may come across a query conflict while calling ga_realtime_sessions table with data range filter condition, e.g.,

when we execute the below query

SELECT * FROM 
TABLE_DATE_RANGE([project:dataset.ga_realtime_sessions_], CURRENT_TIMESTAMP(),CURRENT_TIMESTAMP()) 
LIMIT 1000

We end up with error message
Query Failed
Error: Cannot output multiple independently repeated fields at the same time.
The reason is because of both real-time table and views have same naming pattern

Realtime Table: project:dataset.ga_realtime_sessions_20180929
Realtime View: project:dataset.ga_realtime_sessions_view_20180929

In addition, the real-time view is available in Legacy SQL, so we cannot use it for Standard SQL queries, to overcome this it is good to save below query as view to get realtime data for today.

SELECT  * FROM
  `project.dataset.ga_realtime_sessions_2*`
WHERE
  CONCAT('2', CAST(_TABLE_SUFFIX AS string)) = FORMAT_DATE("%Y%m%d", CURRENT_DATE())
  AND exportKey IN (
  SELECT
    exportKey
  FROM (
    SELECT
      exportKey,
      exportTimeUsec,
      MAX(exportTimeUsec) OVER (PARTITION BY visitKey) AS maxexportTimeUsec
    FROM
      `project.dataset.ga_realtime_sessions_2*`
    WHERE
      CONCAT('2', CAST(_TABLE_SUFFIX AS string)) = FORMAT_DATE("%Y%m%d", CURRENT_DATE()))
  WHERE 
    exportTimeUsec >= maxexportTimeUsec)